Security of Even-Mansour Ciphers under Key-Dependent Messages

نویسندگان

  • Pooya Farshim
  • Louiza Khati
  • Damien Vergnaud
چکیده

The iterated Even–Mansour (EM) ciphers form the basis of many blockcipher designs. Several results have established their security in the CPA/CCA models, under related-key attacks, and in the indifferentiability framework. In this work, we study the Even–Mansour ciphers under key-dependent message (KDM) attacks. KDM security is particularly relevant for blockciphers since non-expanding mechanisms are convenient in setting such as full disk encryption (where various forms of key-dependency might exist). We formalize the folklore result that the ideal cipher is KDM secure. We then show that EM ciphers meet varying levels of KDM security depending on the number of rounds and permutations used. One-round EM achieves some form of KDM security, but this excludes security against offsets of keys. With two rounds we obtain KDM security against offsets, and using different round permutations we achieve KDM security against all permutation-independent claw-free functions. As a contribution of independent interest, we present a modular framework that can facilitate the security treatment of symmetric constructions in models that allow for correlated inputs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Understanding the Known-Key Security of Block Ciphers

Known-key distinguishers for block ciphers were proposed by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major research topic in cryptanalysis since then. A formalization of known-key attacks in general is known to be difficult. In this paper, we tackle this problem for the case of block ciphers based on ideal components such as random permutations and random functions as well as propos...

متن کامل

The Related-Key Security of Iterated Even-Mansour Ciphers

The simplicity and widespread use of blockciphers based on the iterated Even–Mansour (EM) construction has sparked recent interest in the theoretical study of their security. Previous work has established their strong pseudorandom permutation and indifferentiability properties, with some matching lower bounds presented to demonstrate tightness. In this work we initiate the study of the EM ciphe...

متن کامل

Multi-key Security: The Even-Mansour Construction Revisited

At ASIACRYPT 1991, Even and Mansour introduced a block cipher construction based on a single permutation. Their construction has since been lauded for its simplicity, yet also criticized for not providing the same security as other block ciphers against generic attacks. In this paper, we prove that if a small number of plaintexts are encrypted under multiple independent keys, the Even-Mansour c...

متن کامل

New Key Recovery Attacks on Minimal Two-Round Even-Mansour Ciphers

We propose new key recovery attacks on the two minimal two-round n-bit Even-Mansour ciphers that are secure up to 2 queries against distinguishing attacks proved by Chen et al. Our attacks are based on the meet-in-the-middle technique which can significantly reduce the data complexity. In particular, we introduce novel matching techniques which enable us to compute one of the two permutations w...

متن کامل

Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers with Linear Tweak and Key Mixing

The iterated Even-Mansour construction defines a block cipher from a tuple of public n-bit permutations (P1, . . . , Pr) by alternatively xoring some n-bit round key ki, i = 0, . . . , r, and applying permutation Pi to the state. The tweakable Even-Mansour construction generalizes the conventional Even-Mansour construction by replacing the n-bit round keys by n-bit strings derived from a master...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017